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J. Phys. A: Math. Gen. 19 (1986) L655-I-661. Printed in Great Britain 

LE'lTER TO THE EDITOR 

Critical behaviour of the kinetic Ising model on a fractal 
lattice 

J C Angles d'Auriac and R Rammal 
Centre de Recherches sur les Trks Basses TempCratures, CNRS, BP 166 X, 38042 Grenoble 
Cedex. France 

Received 2 April 1986 

Abstract. We study the critical behaviour (static and dynamic) of the Ising model, defined 
on a fractal Sierpinski carpet. Using Monte Carlo calculations estimates for various critical 
exponents are obtained from a finite-size scaling analysis. Our results are compared with 
the available predictions for the dynamical critical exponent z. We find the dynamic 
exponent z near 2.2 to be lower than predicted. 

Dynamic phenomena associated with fractal geometries have been the object of various 
studies in recent years (anomalous diffusion, transport in random media, and so on). 
On the other hand, a systematic study of static critical phenomena on fractal lattices 
has been carried out. More recently, the critical dynamics of the kinetic Ising model 
on fractal lattices (Achiam 1985a, b, Luscombe and Desai 1985, Rammal 1985) and 
percolation clusters (Henley 1985, Rammal and Benoit 1985a, b) has been investigated. 
Some of the results obtained have received numerical confirmation (Rammal and 
Benoft 1985b, Chowdhury and Stauffer 1985, Jain 1985) particularly for the percolation 
clusters, which are known to be relevant for diluted magnetic systems (Stinchcombe 
1983). Furthermore, a lower bound for the dynamic critical exponent z on finitely 
ramified fractals has been suggested (Luscombe and Desai 1985): z 3 d, where d refers 
to the fractal dimension of the lattice. The value z = 6+(1 /  v )  has been obtained for 
quasilinear fractals (Achiam 1985a,b). Finally, for infinitely ramified fractals such as 
the Sierpinski carpet, a domain wall argument has been used (Rammal 1985) to obtain 
z = 1 + d, which is argued to hold at d = 1 + E, where T, - E, v - 1/e  and E << 1. 

Our main purpose in this letter is to present the results of a numerical study of the 
critical behaviour (static and dynamic) of the Ising model on a fractal lattice. We used 
a fractal structure of the Sierpinski carpet type, with parameters b = 1, c = 3 and 1 = 1. 
The static critical behaviour of this type of fractal lattice has been studied previously 
both numerically (Bhanot et af 1984) and using the Migdal-Kadanoff decimation 
scheme (Gefen et a1 1983). The fractal dimension of this lattice is given by d =  
In[ b2( c2 - I*)]/ln( bc). In the case considered here, d = In 8/ln 3 = 1.892 78. The carpet 
has been chosen for two reasons: firstly because of the finite value of the critical 
temperature T, and secondly because of the presence of holes inside the lattice, and 
this occurring at all length scales. At stage n 2 1 of iteration, the linear length scale 
of the embedding lattice is L =  1 +3" and the total number of sites is N,, = 
(44x8"+56~3"+40) /35 .  For large n, the ratio of the number of sites having a 
coordination number 3 and 4 has a limiting finite value given by &= 0.099 43. 
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Figure 1. Magnetic susceptibility per spin ,y( T) as a function of temperature T, for three 
lattice sizes N = 98 ( n  = 2), N = 688 ( n  = 3) and N = 5280 ( n  = 3) ,  corresponding to stage 
iteration n ;  +: N = 96; V = N = 688; A :  N = 5280. 

On the sites of the Sierpinski carpet are located Ising spins, coupled by a nearest- 
neighbour interaction J :  X = -J Eo, gigj, ai = *l. The same coupling constant J has 
been used for internal and boundary bonds. Critical temperature and critical exponents 
have been obtained, through a finite-size scaling, over three-stage iterations. The 
corresponding lattices have respectively N = 96 ( n  = 2), N = 668 ( n  = 3) and N = 5280 
( n  = 4) sites. The results presented below have been extracted from a Monte Carlo 
simulation, performed up to lo5 Mcs/spin. In figures 1 and 2 are shown the results 
for the magnetic susceptibility x( T )  and for the specific heat C (  T) corresponding to 

T 

Figure 2. Same plot as in figure 1, for the specific heat C (  T). We have used the same 
symbols for the different sizes. 
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Figure 3. Temperature variation of the renormalised coupling constant U,. 

the three sizes studied. For both ,y( T) and C (  T) a sharp peak occurs at T -  25. An 
accurate value for the critical temperature T, has been determined, using the renor- 
malised coupling constant method (Binder 1985). For this we have calculated, during 
the Monte Carlo simulations, the first moments of the thermal equilibrium values of 
the normalised magnetisation m = N-' X i  ui. More precisely, (Iml), (m2) and (m') have 
been recorded and the renormalised coupling constant U, has been calculated: 

U, = 1 - (m')L/3(m2)'L. 

The behaviour of this reduced cumulant makes it rather suitable for obtaining estimates 
for T, which are not biased by any assumption about the critical exponents. In figure 
3 are shown the results thus obtained for the temperature variation of U,, for the 
three-stage iteration ( n  = 2,3 and 4).  The common intersection point of these three 
curves yields the following value for T,: T,/ J = 2.02 f 0.02 ( J /  T, = 0.495). This value 
is to be compared with the estimates J/ T, = 0.51 1 f 0.03, 0.500 rt 0.005 and 0.498 f 0.05 
obtained by Bhanot er a1 (1984) for the carpet b = 2, c = 4 and 1 = 2 (d = In 48/ln 8 = 
1.8616). Note that both values of T, are lower than the critical temperature of the 2~ 

Ising model: J /  T, = 0.44. The numerical results agree therefore with the increase of 
T, with d, from T, = 0 at d = 1 (linear Ising chain) to the 2~ limiting value. 

The correlation length exponent v, associated with the transition at T = T,, can be 
deduced from the behaviour of U, close to the fixed point U* (= 0.577): 

For the lattices studied here, it is more convenient to use the following equivalent form: 

giving directly the intrinsic product vd. Here Nn denotes the number of spins at stage 
n. The extracted values of v and vd are respectively v = 1.0904 and vd = 2.063. Using 
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the hyperscaling relation 2 - a = dv, one deduces the following negative value for the 
specific heat exponent: a = -0.06. 

It is interesting to notice that the &-expansion value of v, at d =  1 + E ,  gives 
v = l / ( d - 1 ) a n d t h e n  v=1.1202at d=1.89278and v=1.1606at d=1.8616respec- 
tively. This value of v in our case ( d  = 1.892 78) is slightly higher than the numerical 
one. This contrasts with the findings of Bhanot et a1 where v = 1.28 has been obtained 
from the decay of the spin-spin correlation function along lines which have encountered 
no holes. We believe that the value of v thus obtained here is the appropriate one 
and actually refers to the averaged correlation function over all pairs of spins at a 
given distance. This distinction would arise in any inhomogeneous structure, such as 
the carpet considered here. 

Figure 4. Magnetisation per spin as a function of the temperature T. 

In figure 4 the temperature variations of the magnetisation m ( T )  are shown for 
the three lattice sizes N. The same data are used in figure 5 in a finite-size scaling 
plot, mNB/”a  as a function of ( T -  Tc)N1/”‘,  in order to extract the ratio p /  vd The 
best fit in the plot leads to p /  vd = 0.045 and then a rather small value for the exponent 
p :  /3 = 0.0928. 

The same procedure has been used for the magnetic susceptibility x( T ) ,  as shown 
in figure 6, where x N - ” ” ~  is given as a function of ( T -  TC)N1lud.  The best fit in this 
plot gives y /  vd = 0.925 and then y = 1.908. The accuracy of our estimate for different 
exponents (p ,  y, v) is easily checked on the value of (2p + y ) / d v  = 1.015, instead of 
1.000 according to scaling relations. The set of exponents we have obtained in this 
letter is summarised in table 1, where the results of Bhanot ef a1 have also been 
included. As can be seen a monotonic variation of the exponents is observed, when 
d increases from d = 1 to d = 2. Note that 7 and a given here were extracted from 
the scaling relations 2 - a = dv and 2 - 7 = y /  v respectively. 

Using the single-spin flip dynamics, we have studied the critical relaxation on the 
Sierpinski carpet. For this we have calculated the non-linear relaxation times of the 
magnetisation m ( t )  and the energy E ( t ) .  Our simulation always starts with all spins 
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Figure 5. Finite-size scaling plot for the magnetisation m( T), at different lattice sizes. 

Table 1. Numerical values of the critical temperature T, and static critical exponents for 
two Sierpinski carpets of fractal dimension d For comparison, the corresponding value 
for I D  king model ( d =  1 )  and 2D Iskg model ( d = 2 )  are included. 

d V =c B Y 7 a 2 
~ ~~ 

1 0 ( 1 )  (0) ( 1 )  ( 1 )  (1) 2 
1 + E  E I / &  
1.8616 1.957 0.005 1.28 0.05 0.10 0.05 1.90 0.05 0.5156 -0.10 - 
1.8927 2.03 0.02 1.090 0.0928 1.908 0.3155 -0.063 2.20i0.06 

- 2 + &  - - - 

7 2 2.269 1 d 5 t O(ln) 2.12h0.06 
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up, m ( O ) =  1. 
usual by 
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The non-linear relaxation time for the magnetisation m( t )  is defined as 

r $ = l 0  d t  m ( t ) - m ( m )  
l - m ( m )  * 

Simililarly, for the energy relaxation, we have used 

In order to achieve sufficient accuracy, the present calculations were restricted to 
T = T,. The dynamic exponents have been extracted using finite-size scaling. Indeed, 
scaling arguments show that at T a  T,, rM and rE increase according to rM - 6' and 
7, - 6' respectively. The non-linear exponents are related to the linear exponent z 
(Racz 1976) through zM = z - p /  Y and Z, = z - (1 - a)/ v respectively. Here z is 
assumed to be the same for the magnetisation and for the energy relaxation. At critical 
temperature and for a finite system, this leads to the following expressions for rM and 
7, as functions of the size N :  

x, = (? - ) (d ) - l .  1-a  - 
V 

Only the exponents xM and X, are measured here. Let us first consider the relaxation 
of m ( t ) .  rM, as defined above, has been measured for three-stage iterations. From 
the log-log plot of TM averaged over 3000 relaxations as a function of N (figure 7), 

In N 

Figure 7. Log-log plot of the relaxation times ( T ~  and T ~ )  as functions of the lattice size 
N. 
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we have deduced the value for the exponent to be xM = 1.113. Using the previously 
obtained values for p and v, one obtains z = 2.20* 0.06. 

The same analysis has been carried out for the energy relaxation. We obtained 
xE = 0.573, which leads to z = 2.06 f 0.06. 

The value of z (at least that deduced from z M )  is larger than the most accurate 
one: z = 2.12f0.06 (Jan et al 1983, Kalle 1984) for the 2~ Ising model. The increase 
of the dynamic exponent is in good agreement with the recent predictions summarised 
at the beginning of this letter. However the values for z obtained here are clearly 
lower than the predicted ones. Indeed, the first one, z = d +  1/ v, leads to z = 2.8098 
whereas the second one gives z = d +  1 = 2.8927. 

Let us conclude this letter with two remarks. Firstly, the static critical exponents 
on the Sierpinski carpet appear to follow the expected pattern and this is shown in 
table 1. Similarly, due to the presence of holes in the lattice (defective structure), the 
dynamic critical exponent z is increased, in comparison with the ZD Ising model. This 
means that details of the structure not described by d alone must be involved in the 
calculation of z. Secondly, the obtained value of z does not fit the recently made 
predictions for its value, and this calls for further investigation. 
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